یادگیری عمیق با تنسورفلو و کراس

دوره آموزش یادگیری عمیق با تنسورفلو و کراس به آموزش کاربردی یادگیری عمیق و تمام مباحث مربوط به کتابخانه‌­های تنسورفلو و کراس می‌­پردازد. به طور مشخص­‌تر موضوعاتی که در این دوره دنبال می‌­شود شامل موارد ...

محبوب کاربران
گواهی‌نامه
4.7 (109 امتیاز)
3,575 دانشجو
مقدماتی
محتوای دوره
پیش‌نیاز‌ها
درباره دوره
نظرات کاربران
درباره استاد

محتوای دوره

4 فصل 96 جلسه 21 ساعت ویدیو
مقدمه‌ای بر یادگیری ماشین
مبانی یادگیری عمیق
شبکه عصبی عمیق
شبکه کانولوشنال عمیق

پیش‌نیاز‌ها

در تمام مراحل این دوره برای راحتی شرکت­‌کنندگان سعی شده است تا تمامی مباحث به زبانی ساده بیان شوند؛ اما برای درک کامل مباحث مطرح شده لازم است تا مخاطب با موارد زیر آشنایی داشته باشد:

  • آشنایی با مفاهیم برنامه‌­نویسی پایتون
  • آشنایی با مباحث مربوط به یادگیری ماشین
  • آشنایی با کتابخانه­‌های Scikit-learn، Numpy، Matplotlib

درباره دوره

دوره آموزش یادگیری عمیق با تنسورفلو و کراس به آموزش کاربردی یادگیری عمیق و تمام مباحث مربوط به کتابخانه‌­های تنسورفلو و کراس می‌­پردازد. به طور مشخص­‌تر موضوعاتی که در این دوره دنبال می‌­شود شامل موارد زیر است:

  • پیاده‌­سازی شبکه‌­های عصبی (یادگیری عمیق) در پایتون
  • پیاده‌­سازی شبکه­‌های Multi-layer perceptron (MLP) و Convolutional
  • بحث و بررسی در رابطه با موضوعات گوناگون یادگیری عمیق مانند: Transfer learning، Overfitting و Regularization
  • بررسی دقیق و عمیق تنسورفلو و کراس

 

آشنایی با یادگیری عمیق، تنسورفلو و کراس

در یک تعریف کلی، یادگیری عمیق یکی از شاخه­‌های یادگیری ماشین و هوش مصنوعی است که در آن سعی می­‌شود از روش کارکرد مغز برای یادگیری موضوعات استفاده شود.

در یادگیری عمیق به کامپیوترها آموزش داده می‌­شود که برای حل مسائل از روش­‌هایی استفاده کنند که مغز انسان برای حل مسائل از آن روش‌­ها استفاده می‌­کند. به طور کلی یادگیری عمیق سعی می‌­کند به شبیه‌سازی مغز انسان بپردازد.

«تنسورفلو» (TensorFlow)، یک کتابخانه رایگان و اوپن سورس است که کاربردهای زیادی در یادگیری ماشین دارد. یکی از اصلی‌­ترین کاربردهای تنسورفلو در پیاده‌­سازی شبکه­‌های عصبی است. به همین دلیل است که این کتابخانه، پراستفاده‌­ترین کتابخانه در یادگیری عمیق است.

کراس یک کتابخانه در تنسورفلو است که با هدف توسعه شبکه‌­های عصبی ایجاد شده است.

 

هدف از برگزاری دوره آموزش یادگیری عمیق با تنسورفلو و کراس چیست؟

امروزه اهمیت یادگیری عمیق در بسیاری از تکنولوژی‌­ها بر کسی پوشیده نیست؛ تا جایی که در دنیای امروز یادگیری عمیق به مغز محاسباتی در بسیاری از زمینه­‌های علم و تکنولوژی تبدیل شده است. به همین دلیل است که در دنیایی از صنایع مختلف تا تکنولوژی‌­های مختلف، تقریبا هیچ موردی را نمی‌­توان پیدا کرد که در آن ردپایی از یادگیری عمیق دیده نشود. به این ترتیب، اصلی­‌ترین هدف این دوره آموزش کاربردی یادگیری عمیق و شناخت ابعاد گوناگون آن است.

در این دوره شما با این ابزار بسیار مهم به ­صورت عملیاتی آشنا می‌­شوید و جزئیات لازم برای پیاده‌­سازی بهینه این الگوریتم‌ها را در عمل می­‌آموزید. در ادامه راه می‌­توانید از این ابزار در هر زمینه‌­ای که با داده روبه‌­رو می‌شوید و به دنبال پیدا کردن الگوهای آن هستید، استفاده کنید.

 

دوره آموزش یادگیری عمیق با تنسورفلو و کراس برای چه کسانی مناسب است؟

محتوای این دوره به نحوی انتخاب شده که مناسب افرادی باشد که دوره یادگیری ماشین را گذرانده‌اند و با مفاهیم ابتدایی هوش مصنوعی آشنایی دارند و به دنبال ادامه مسیر یادگیری/شغلی در این زمینه هستند. با توجه به اینکه این دوره ترکیب آموزش مفاهیم تئوری و عملی در کنار یکدیگر است، دانشجویان این دوره می‌توانند مسائل دنیای واقعی مثل پردازش تصویر، پردازش زبان طبیعی، پیش‌بینی‌های دنباله‌های عددی و ترافیک و غیره را حل کنند. بنابراین این دوره مناسب کسانی خواهند بود که علاقه‌مند به مباحث پیشرفته هوش مصنوعی و چالش‌های لبه‌ی تکنولوژی هستند.

 

در انتهای دوره آموزش یادگیری عمیق با تنسورفلو و کراس مخاطب چه دستاوردی خواهد داشت؟

با توجه به محتوایی که در این دوره به شرکت‌­کنندگان آموزش داده می‌­شود، در انتهای دوره مخاطبان محترم با موارد زیر آشنایی خواهند داشت:

  • پیاده­‌سازی شبکه‌­های MLP
  • پیاده‌­سازی شبکه­‌های Sequential، Functional و Subclass
  • بهینه­‌سازی پارامترهای شبکه­‌های عصبی
  • شناخت ترکیب مناسب activation function و initialization
  • شناخت بهینه‌­ساز­ها و برنامه‌­های زمانی متناسب
  • شناخت راهکارهای مقابله با Overfitting
  • شناخت ابزار لازم برای ارزیابی عدم قطعیت پیش‌بینی شبکه­‌های عصبی
  • پیاده‌سازی Transfer learning و استفاده از شبکه­‌های قدرتمند آماده
  • پیاده‌­سازی شبکه­‌های Convolutional

 

وجه تمایز این دوره نسبت به سایر دوره­‌های مشابه چیست؟

در این دوره مدرس پس از نشان دادن تصویر کلی از مفهوم یادگیری عمیق، وارد جزئیات پیاده­‌سازی می‌­شود. در این پیاده‌سازی هدف نوشتن کدهای طولانی و پیچیده نیست، بلکه مدرس با جزئیات تمام به بررسی و بحث درباره تمام خط­‌های این پیاده‌­سازی می‌­پردازد. مدرس برای مباحث مختلف این دوره، الگوهای پیاده‌­سازی کد را به شما می‌­آموزد و این یعنی شما در ادامه مسیر کار با شبکه­‌های عصبی نیز می‌­توانید این الگوها را در یادگیری مباحث تکنیکی کدنویسی استفاده کنید. مدرس سعی می­‌کند مباحث را با ساده‌ترین زبان ممکن بیان کند اما در این حال شما را با پیچیدگی­‌های کار با شبکه‌های عصبی نیز آشنا کند. در این دوره هر قدمی که جلو می­‌روید مدرس دلیل و منطق پشت آن قدم را شرح می‌­دهد که اهمیت آن قدم‌­ها را در ادامه مسیر در ذهن داشته باشید.

دوره آموزش یادگیری عمیق با تنسورفلو و کراس

زبان پایتون محبوب‌ترین زبان برنامه‌نویسی برای مباحث پیشرفته‌ای مانند هوش مصنوعی و یادگیری ماشین است. این زبان برای هر پلتفرم و پروژه‌ای کتابخانه و ابزارهای مخصوصی دارد. همچنین لازم است بدانید Deep learning از شاخه‌های اصلی و مهم هوش‌ مصنوعی بوده و امروزه تبدیل به موضوعات مورد توجه برنامه‌نویسان شده است. 

در این پکیج آموزش یادگیری عمیق با تنسورفلو و کراس قصد داریم شما را با مفاهیم و اصول اولیه یادگیری عمیق با پایتون آشنا کنیم. برای این منظور ابتدا باید در مورد تنسورفلو و کراس که از کتابخانه‌های معروف و قدرتمند این زبان برنامه‌نویسی برای یادگیری عمیق هستند اطلاعات دقیقی به دست آوریم. سپس یاد بگیریم الگوریتم‌های یادگیری چطور کار می‌کنند و نحوه پیاده سازی هرکدام چطور ممکن می‌شود. 

پیش‌نیازهای این دوره

آموزش یادگیری عمیق با تنسورفلو و کراس با توجه به این که از مباحث پیشرفته برنامه‌نویسی به شمار می‌رود، پیش‌نیازهایی دارد. در واقع لازم است در حوزه‌های زیر اطلاعات کافی و تجربه نسبتاً خوبی داشته باشید تا بتوانیم موضوع یادگیری عمیق را راحت‌تر پیش ببریم.

زبان برنامه نویسی پایتون

همان‌طور که اشاره شد برای کار با کتابخانه تنسورفلو و کراس نیاز به زبان پایتون داریم. این زبان قدرتمند بهترین و آسان‌ترین زبان برای یادگیری محسوب می‌شود، زیرا بسیار به زبان محاوره‌ای انگلیسی نزدیک است. پایتون اولین پیش‌نیاز آموزش یادگیری عمیق با تنسورفلو و کراس خواهد بود. باید در کار کردن با این زبان مهارت و تجربه مناسبی داشته باشید. در مکتب خونه انواع دوره آموزش زبان برنامه نویسی پایتون به عنوان مکمل و پیش نیاز این دوره موجود است.

هوش مصنوعی

یادگیری عمیق یکی از زیرشاخه‌های اصلی هوش مصنوعی محسوب می‌شود. پس باید با مفاهیم اولیه این موضوع نیز آشنا باشید تا بتوانید درک بهتری از یادگیری عمیق کسب کنید. 

یادگیری ماشین

یادگیری ماشین پایه و اساس یادگیری عمیق است. در حقیقت یادگیری عمیق یکی از تکنیک‌های یادگیری ماشین بوده و برای درک آن نیاز به درک یادگیری ماشین داریم. پس اگر دانش کافی در این زمینه ندارید سعی کنید قبل از شرکت در آموزش یادگیری عمیق با تنسورفلو و کراس، در مورد آن تحقیق و مطالعه کنید.

منابع و الزاماتی که دوره آموزش یادگیری عمیق با تنسورفلو و کراس براساس آن‌­ها تدریس شده است چیست؟

در این دوره از منابع گوناگونی بهره گرفته شده است. اصلی‌­ترین منابع در برگزاری این دوره موارد زیر است:

1) Hands-On Machine Learning with Scikit-Learn, Keras, and Tensorflow, Aurélien Géron, Published by O’Reilly Media, Inc., 2019

2) Deep Learning, Aaron Courville, Ian Goodfellow, and Yoshua Bengio, MIT Press, 2015

3) https://www.tensorflow.org

4) https://keras.io

کراس و تنسورفلو چیست؟

تا اینجا فهمیدیم که برای پیاده‌سازی یادگیری عمیق با زبان پایتون باید یادگیری ماشین را به همراه تکنیک‌ها و الگوریتم‌های یادگیری عمیق استفاده کنیم. یادگیری ماشین به تنهایی فرایندی بسیار پیچیده بوده و نیاز به محاسباتی وسیع و سخت دارد. 

تیم Google Brain کتابخانه‌ای قدرتمند برای ساده و سریع کردن این محاسبات ساخته‌ که با نام تنسورفلو شناخته می‌شود. این کتابخانه دارای یک سیستم هوشمند است که از ادغام الگوریتم‌های یادگیری ماشین و یادگیری عمیق به دست آمده است. این کتابخانه به گونه‌ای طراحی و پیاده سازی شده که در زبان C++ نیز قابل استفاده باشد. 

کتابخانه دیگری که در این آموزش با آن سروکار داریم کراس «Keras» نام دارد. این کتابخانه یک ابزار پیشرفته برای یادگیری عمیق با شبکه عصبی است. برای کار کردن با کراس لازم است با کتابخانه‌های Numpy ، Pandas  و scikit-learn آشنا باشید. 

مزایای ثبت‌نام در این آموزش یادگیری عمیق با تنسورفلو و کراس

شاید برایتان سؤال باشد که چرا آموزش رایگان یادگیری ماشین با پایتون را پیدا کرده و از آن برای کسب مهارت استفاده نکنم. اولاً باید بدانید اغلب دوره‌های آموزشی توسط افراد ضبط می‌شوند که قصد فروش دوره‌های پیشرفته‌تری را دارند. در نتیجه عنوانی مانند «آموزش رایگان یادگیری عمیق» تنها جنبه تبلیغاتی موضوع را پوشش می‌دهد. 

در واقع دوره‌ای که کلمه رایگان را با خود به یدک می‌کشد هیچ‌وقت نمی‌تواند کامل و جامع باشد. کما این که حتی وقتی دوره‌ای با سطح آموزشی مقدماتی و متوسط هم خریداری می‌کنیم باید با توجه به سطح آموزشی خود تمام مباحث را پوشش دهد. به علاوه در صورت ثبت‌نام در این دوره خدمات و مزایای زیر را دریافت خواهید کرد.

·      خدمات منتورینگ برای پشتیبانی علمی دانشجو توسط یک فرد متخصص

·      تالار گفتگو برای ارتباط با دیگر دانشجویان و شخص استاد

·      آموزش کاملاً پروژه محور 

·      تمرین و آزمون با پشتیبانی لحظه‌ای 

·      رفع اشکالات در طی دوره

·      دریافت گواهینامه معتبر از مکتب خونه

·      تسهیل استخدام با تأیید مهارت شما در رزومه‌ساز جاب ویژن

آموزش یادگیری عمیق با تنسورفلو و کراس مناسب چه افرادی است؟

هر دوره‌ آموزشی جامعه هدفی دارد. در نتیجه باید توجه کنیم که دوره مورد نظر برای چه کسانی مفید و مناسب است تا با خرید محصول نامناسب ضرر نکنیم. البته خرید هیچ آموزش ضرر محسوب نمی‌شود؛ چرا که به هر حال فردی که می‌خواهد یک مطلب و مهارت خاصی را یاد بگیرید حتماً برای یادگیری پیش‌نیازهای آن نیز تلاش خواهد کرد. 

قبل از هر چیزی باید بدانید این دوره در وهله اول برای افرادی مناسب است که موارد مطرح شده به عنوان پیش‌نیاز دوره را بلد باشد. در صورت دارا بودن این ویژگی هر فردی که به مباحث پیشرفته هوش مصنوعی و یادگیری سیستم‌های کامپیوتری علاقه دارد می‌تواند فرد مناسبی برای شرکت در این دوره باشد. 

دستاوردهای این دوره برای دانشجو چه خواهد بود؟

دوره پیش رو دارای سطح مقدماتی است؛ بنابراین بیشتر با هدف آشنایی شما با مباحث مربوط به یادگیری عمیق طراحی و تولید شده است. در آموزش tensorflow در پایتون با موارد زیر به گونه‌ای آشنا خواهید شد که بتوانید مسیر یادگیری خود را به خوبی برنامه‌ریزی و ادامه دهد. 

·      آشنایی دقیق و عمیق با کتابخانه‌های تنسورفلو و کراس

·      آشنای با نحوه پیاده‌سازی یادگیری عمیق با کتابخانه‌های فوق

·      شناخت ابزار لازم برای ارزیابی عدم قطعیت پیش‌بینی شبکه­‌های عصبی

·      شناخت بهینه‌­ساز­ها و برنامه‌­های زمانی متناسب

·      شناخت بهینه‌­ساز­ها و برنامه‌­های زمانی متناسب

·      بهینه­‌سازی پارامترهای شبکه­‌های عصبی

·      کسب مهارت لازم برای استفاده از شبکه­‌های قدرتمند آماده

·      پیاده­‌سازی شبکه‌­های چندلایه  MLP

·      پیاده‌­سازی شبکه­‌های Sequential، Functional  و Subclass  

·      شناخت ترکیب مناسب activation function و  initialization

·      شناخت راهکارهای مقابله با  Overfitting

·      آشنایی با پیاده‌سازی Transfer learning  

·      آشنایی با نحوه پیاده‌­سازی شبکه­‌های  Convolutional

سرفصل‌های آموزش یادگیری عمیق با تنسورفلو و کراس

توجه داشته باشید که آموزش تنسورفلو پیشرفته نیاز به کسب دانش کافی در سطح مقدماتی و متوسط در این زمینه دارد. به همین دلیل این آموزش کتابخانه تنسورفلو و کراس در مکتب خونه را برای تمام علاقه‌مندان حوزه هوش‌ مصنوعی و یادگیری ماشین توصیه می‌کنیم. 

فصل اول: مقدمه‌ای بر یادگیری ماشین

هدف اصلی این دوره آشنایی شما با مفاهیم اولیه و در اصل پایه‌ریزی درست برای ورود شما به مباحث پیشرفته و حرفه‌ای است. از این رو فصل اول را با عنوان «مقدمه‌ای بر یادگیری ماشین» شروع کردیم. این فصل دارای دو فایل ویدئویی، یک پروژه تمرینی یادگیری ماشین و یک آزمون تشریحی است.

فصل دوم: مبانی یادگیری عمیق

در این فصل باید مباحث مختلف یادگیری عمیق و مبانی آن را در قالب ۳۵ فایل تصویری بگذرانید. این موضوعات با تاریخچه یادگیری عمیق شروع و به یک فایل جمع‌بندی ختم می‌شود. در انتها نیز باید بتوانید ۳ پروژه تمرینی را با بهترین نمره ممکن حل کنید تا از آمادگی شما برای ورود به فصل بعدی اطمینان حاصل شود.

فصل سوم: شبکه عصبی عمیق

یکی از تکنیک‌های معروف و محبوب یادگیری عمیق الگوریتم شبکه عصبی است. این الگوریتم انواع مختلفی دارد که با توجه به نیاز و نوع پروژه می‌توانیم یکی را انتخاب و مورد استفاده قرار دهیم. در این فصل مباحث پایه‌ای این تکنیک از یادگیری عمیق را یاد می‌گیرید. فصل سوم دارای ۴۱ درس آموزشی و ۵ پروژه تمرینی است که انجام آن‌ها الزامی است.

فصل چهارم: شبکه کانولوشنال عمیق

شبکه عصبی کانولوشی از الگوریتم‌های پرکاربرد شبکه عصبی است. این الگوریتم چند لایه بوده و گزینه‌ای مناسب و عالی برای یادگیری عمیق به شمار می‌رود. در این فصل که فصل پایانی دوره است ۱۸ جلسه تدریس به همراه ۴ پروژه تمرینی را پشت سر خواهید گذاشت.

گواهینامه مکتب خونه

برای دریافت گواهینامه اتمام دوره باید بتوانید تمام فصل‌ها را با نمره بالا به اتمام برسانید. قبولی در این دوره نیازمند کسب حداقل نمره ۷۰ در مجموع است. شما ۱۰ هفته برای اتمام دوره به همراه انجام تمرینات فرصت دارید. این موضوع شرط اصلی قبولی شما خواهد بود. یعنی باید بتوانید طی ۱۰ هفته نمره لازم را کسب کنید. در غیر این صورت اگر بر دریافت گواهینامه اصرار دارید، مجبور به تمدید دوره با مبلغ مورد نیاز برای صدور گواهینامه خواهید بود. 

آموزش یادگیری عمیق با تنسور فلو و کراس در  مکتب خونه

از شما کاربران گرامی دعوت می‌کنیم برای کسب تجربه‌ای بی‌بدیل از آموزش و یادگیری این دوره‌ را با قیمتی استثنائی و پشتیبانی عالی تهیه کنید. در صورتی که به مشاوره تخصصی در این رابطه نیاز دارید سوالات خود را با بخش پشتیبانی این کورس در میان بگذارید. همکاران ما در هر ساعت از شبانه روز آمادگی راهنمایی شما را دارند. 

همچنین در مکتب خونه انواع دوره آموزش هوش مصنوعی، آموزش یادگیری ماشین، آموزش یادگیری عمیق و آموزش پایتون به عنوان پیش‌نیازهای این دوره وجود دارد.

اطلاعات بیشتر

امتیاز و نظرات کاربران

4.7

از مجموع 109 امتیاز

44 نظر

18 روز پیش

من از صفر شروع كردم و دوره پايتون، يادگيري ماشين و يادگيري عميق رو با استاد اقبالي گذروندم . ايشون استاد بسيار قابل و ماهري هستند هم از نظر دانش تكنيكي و فني و هم انتقال مطالب. شيوه تدريسشون بسيار كاربردي و روي نظم و اصولهست.با چند استاد قبلا كار كردم ايشون بهترين استادي هستند كه من در اين مسير شناختم. الان هم در نظر دارم دوره يادگيري عميق _مدلسازي توالي ايشون رو دنبال كنم.

سوزانه صحتي

سوزانه صحتي

1 ماه پیش

سلام.از سطح دانش و قدرت انتقال مطالب استاد واقعا لذت بردم و کلی نکته از ایشون یاد گرفتم.من چندین دوره رو توی این حوزه دیدم ولی این دوره بسیارجامع و با سطح بسیار بالایی ارائه شده.تشکر از استاد عزیز و آرزوی موفقیت

دانشجوی دوره

2 ماه پیش

عالی، عالی

حمید شعبانی

حمید شعبانی

2 ماه پیش

دوره بسیار خوبیه من دوره زیاد دیدم برای یادگیری عمیق ولی این دوره خیلی هم خلاصه و در عین حال عمیق به همه مباحث پرداخته و سیر خوبی داره.

زینب معروفی

زینب معروفی

2 ماه پیش

قدرت بیان و ارائه مطالبش فوق العاده است فقط فکر میکنم Object detection , Segmentation رو یکم سریع ازش رد شدن و امیدوارم برای این ۲ مورد هم دوره های جداگانه و مفصل کورسی داشته باشیم

منوچهر سلیمانی

منوچهر سلیمانی

2 ماه پیش

یک دانشمند و ضمنا مدرس بسیار توانمند دستمریزا د

جمشید سلیمی

جمشید سلیمی

نظرات بیشتر

گواهی‌نامه

یادگیری عمیق با تنسورفلو و کراس

پس از گذراندن محتوای دوره به صورت آنلاین (بدون دانلود) در سایت مکتب‌خونه، در صورتی‌ که حد نصاب قبولی در دوره را کسب و تمرین ها و پروژه های الزامی را ارسال کنید، گواهی‌نامه رسمی پایان دوره توسط مکتب‌خونه به اسم شما صادر شده و در اختیار شما قرار می‌گیرد.

قابل اشتراک‌گذاری در

linkdin

دوره‌های پیشنهادی

این دوره در کدام مسیرهای یادگیری است؟

درباره استاد

پژمان اقبالی
پژمان اقبالی
3 دوره
4,110 دانشجو

پژمان اقبالی دانشجوی دکتری بیومکانیک در دانشگاه EPFL سوئیس است. وی دارای تجربه تدریس مباحث علوم کامپیوتر مخصوصاً برنامه‌نویسی محاسباتی است. او سابقه‌ی تدریس برنامه‌نویسی پایتون، متلب و R، محاسبات علمی، بهینه‌سازی، علم داده و یادگیری ماشین را دارد. 
ایشان در حال حاضر بر روی توسعه‌ی مدل‌های آماری و یادگیری ماشین برای تحلیل داده‌های پزشکی کار می‌کند. حوزه‌های تخصصی او برنامه‌نویسی محاسباتی، آمار و یادگیری ماشین، مدل‌های اجزای محدود و بهینه‌سازی است.

اطلاعات بیشتر

دیگر دوره‌های پژمان اقبالی

سوالات پرتکرار

آیا در صورت خرید دوره، گواهی نامه آن به من تعلق می گیرد؟

خیر؛ شما با خرید دوره می توانید در آن دوره شرکت کنید و به محتوای آن دسترسی خواهید داشت. در صورتی که در زمان تعیین شده دوره را با نمره قبولی بگذرانید، گواهی نامه دوره به نام شما صادر خواهد شد.

حداقل و حداکثر زمانی که می توانم یک دوره را بگذرانم چقدر است؟

برای گذراندن دوره حداقل زمانی وجود ندارد و شما می توانید در هر زمانی که مایل هستید فعالیت های مربوطه را انجام دهید. برای هر دوره یک حداکثر زمان تعیین شده است که در صفحه معرفی دوره می توانید مشاهده کنید که از زمان خرید دوره توسط شما تنها در آن مدت شما از ویژگی های تصحیح پروژه ها توسط پشتیبان و دریافت گواهی نامه بهره مند خواهید بود.

در صورت قبولی در دوره، آیا امکان دریافت نسخه فیزیکی گواهی نامه دوره را دارم؟

خیر، به دلیل مسائل زیست محیطی و کاهش قطع درختان، فقط نسخه الکترونیکی گواهی‌نامه در اختیار شما قرار می‌گیرد

پس از سپری شدن زمان دوره، به محتوای دوره دسترسی خواهم داشت؟

بله؛ پس از سپری شدن مدت زمان دوره شما به محتوای دوره دسترسی خواهید داشت و می توانید از ویدئوها، تمارین، پروژه و دیگر محتوای دوره در صورت وجود استفاده کنید ولی امکان تصحیح تمارین توسط پشتیبان و دریافت گواهی نامه برای شما وجود نخواهد داشت.